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ABSTRACT

The ensemble square root Kalman filter (ESRF) is a variant of the ensemble Kalman filter used

with deterministic observations that includes a matrix square root to account for the uncertainty of

the unperturbed ensemble observations. Because of the difficulties in solving this equation, a serial

approach is often used where observations are assimilated sequentially one after another. As previously

demonstrated, in implementations to date the serial approach for the ESRF is suboptimal when used

in conjunction with covariance localization, as the Schur product used in the localization does

not commute with assimilation. In this work, a new algorithm is presented for the direct solution of the

ESRF equations based on finding the eigenvalues and eigenvectors of a sparse, square, and symmetric

positive semidefinite matrix with dimensions of the number of observations to be assimilated. This is

amenable to direct computation using dedicated, massively parallel, and mature libraries. These li-

braries make it relatively simple to assemble and compute the observation principal components and to

solve the ESRF without using the serial approach. They also provide the eigenspectrum of the forward

observation covariance matrix. The parallel direct approach described in this paper neglects the near-

zero eigenvalues, which regularizes the ESRF problem. Numerical results show this approach is a highly

scalable parallel method.

1. Introduction

Modern data assimilation methods for numerical

weather prediction are called upon to merge up to

the order of 106 2 107 observations (Lahoz and

Schneider 2014) of the surface and atmosphere with

model forecasts consisting of the order of 108 or

more state variables to improve initial conditions

and to produce probability estimates. As the size of

this problem continues to increase, especially as re-

motely sensed satellite data become increasingly

prevalent, it is essential to develop scalable methods

that can handle increasing problem sizes in efficient

and accurate ways.

In this paper we will explore a new method for di-

rectly solving the square root ensemble Kalman filter

(EnKF) equations without using a serial approxima-

tion or perturbed observations. This implementation is

scalable across many processing elements and takes

advantage of recent improvements in both theoretical

and computational linear algebra. It avoids a major

problem that occurs with the serial approximation to

the square root EnKF when used in the presence of

covariance localization—namely, that the ordering of

the observations becomes important, since the co-

variance localization operation does not commute

(Nerger 2015; Bishop et al. 2015). While Bishop et al.

(2015) introduced the consistent hybrid ensemble filter

(CHEF), which provides consistent serial observation

processing in a non–square root EnKF framework

by using perturbed observations, this manuscript
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addresses how to make the square root EnKF equa-

tions consistent with covariance localization without

the use of perturbed observations using a parallel direct

approach.

The EnKF was originally introduced by Evensen

(1994) as a method to estimate the covariances used in

the Kalman filter equation (Kalman 1960) using an

ensemble of model predictions. This innovation made it

feasible to run statistical data assimilation problems

even on very large dynamical systems of size Nstate,

where the full covariancematrices of size (Nstate 3Nstate)

would be prohibitively large to store and invert.

Instead, a small ensemble of size (Nstate 3Nens), where

Nens � Nstate, is used to estimate the necessary co-

variance matrices.

Two crucial issues arise in the use of the EnKF as

originally formulated. The first crucial issue is the

systematic underestimation of ensemble spread that

occurs when assimilating the same observations to

update both the ensemble mean and the covariance

with the unmodified Kalman equations. Two main

families of solutions have been devised to address this

problem. The first approach (Houtekamer and

Mitchell 1998; Burgers et al. 1998) is to perturb ob-

servations with independently sampled noise to

update each ensemble member. However, this in-

troduces sampling error, which causes the filter to be

suboptimal—especially when Nens is small—as dem-

onstrated by Whitaker and Hamill (2002). The other

approach, which uses the same nonperturbed obser-

vation for each ensemble member, is the ensemble

square root filter (ESRF). This method explicitly

accounts for the underrepresentation of error stem-

ming from the use of deterministic observations by

adding a square root term to the Kalman update for

the ensemble. Various flavors of ESRF have been

developed (Bishop et al. 2001; Anderson 2001;

Whitaker and Hamill 2002) that Tippett et al. (2003)

showed are all equivalent, in the sense they perform

analysis in the same vector space and find the same

covariance.

The second crucial issue is that the sample co-

variance, based on a low-rank estimate, may contain

spurious correlations between two distant points. This

issue decreases in severity as the ensemble size grows,

but because by design Nens � Nstate, the issue of spu-

rious correlations cannot be completely eliminated by

increasing the ensemble size. Therefore, a covariance

localization method, which uses a Schur product

(component-wise multiplication) to zero out correla-

tions further than a specified distance (Gaspari and

Cohn 1999; Houtekamer and Mitchell 2001; Hamill

et al. 2001), is typically employed to reduce spurious

correlations. This also increases the rank of the co-

variance matrices.

Without covariance localization, the ESRF equations

can be solved in a serial fashion as the Kalman gain

commutes. The commutativity property of the serial

ESRF solution is lost when covariance localization is

used, as the Schur product is a nonlinear operation, and

the serial ESRF approximation does not correctly up-

date the high-rank localized matrix. Issues began

to appear in the combination of the serial ESRF with

covariance localization in the differences in results in

Holland and Wang (2013) using a simplified primitive

equations model and, subsequently, Nerger (2015)

and Bishop et al. (2015) clearly demonstrated the

suboptimality of the serial approach when used without

perturbed observations, while Bishop et al. (2015) pre-

sented the CHEF framework that provides consistent

updates to the mean and covariances with perturbed

observations. In the presence of covariance localization

without perturbed observations, assimilating all obser-

vations at once is a theoretically preferable method.

However, the challenge of how to implement this in a

scalable way in actual full-scale data assimilation sys-

tems seems daunting at first. In this paper, we demon-

strate how to take advantage of modern, massively

parallel linear algebra system libraries to solve these

equations in a scalable way. This becomes the basis for

our parallel direct ESRF filter.

a. Motivation

Several parallel EnKF implementations are described

in the literature, including Keppenne and Rienecker

(2002), Zhang et al. (2005), Anderson and Collins

(2007), and Wang et al. (2013). These methods do not

specifically address the issue of the clash between co-

variance localization and the serial approach that causes

the ordering of observations to become important.

Furthermore, as shown in Anderson and Collins (2007),

an additional complexity that arises when using the

serial filter in a parallel setting is that the forward-

calculated observations H(x) (where H is the possibly

nonlinear operator mapping the model space to the

observation space and x is the model/state variable)

must be either recomputed (which would require com-

munication among processors) or treated as part of the

augmented state that is also updated during the serial

filter. This second approach serves to alleviate a major

problem with parallelizing the serial filter, but it still

requires observations to be assimilated one at a time.

Indeed, the very concept of ‘‘serial’’ observations seems

antithetical to parallelization, by definition. Therefore,

perhaps a reevaluation of the serial filter is in order, as

the data assimilation problem size continues to grow.
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In Bishop et al. (2015) a method is described to

ensure the assimilation update does not depend upon

the order of the observations and serial batches of

perturbed observations are assimilated by correctly

updating the true high-rank localized covariance ma-

trices. In this paper we present a method for solving the

global ESRF equations with covariance localization

such that the solution is likewise independent of or-

dering, but in our case the observations are assimilated

all at once. Because we work with eigenpairs of the

forward-calculated observation covariance matrix, it is

natural for us to examine the spectrum of this matrix.

We demonstrate that the effective rank of the forward

observation covariance matrix decreases as a function

of localization length scale. This method can therefore

be used to study the eigenspectrum of different local-

ization techniques.

b. The HWRF Ensemble Data Assimilation System

For our base data assimilation system, we use the

Hurricane EnsembleDataAssimilation System (HEDAS),

developed by the Hurricane Research Division

(HRD) of the NOAA Atlantic Oceanographic and

Meteorological Laboratory (AOML) under NOAA’s

Hurricane Forecast Improvement Program (HFIP)

(Aksoy et al. 2012, 2013; Aksoy 2013; Vukicevic et al.

2013; Aberson et al. 2015). HEDAS is based on a

serial implementation of the ESRF and is specifically

designed to assimilate hurricane observations col-

lected by reconnaissance aircraft. Its focus is to gen-

erate a vortex that reasonably matches flight data,

and it includes covariance localization at heuristically

determined length scales. The application uses 30

ensemble members. The initial and lateral boundary

ensemble perturbations are obtained from operational

National Centers for Environmental Prediction Global

Ensemble Forecast System analyses. Aksoy et al.

(2013) showed that the primary circulation in HEDAS

exhibits correlations with their observed counterparts

of 87%– 97%. HEDAS also produces good analyses in

other aspects of the structure of the primary circula-

tion, such as the radius of maximum winds, wave-

number 1 asymmetry, and storm size. As noted by

Nerger (2015), the suboptimal effect of the non-

commutativity of observations and covariance locali-

zation is hypothesized to be small in realistic systems

when the assimilation produces small changes to the

background, and as HEDAS distributes observations

among multiple frequently spaced assimilation cycles

(Aksoy 2013), this is likely to be the case, especially

after the first assimilation cycle. Nonetheless, in this

paper we are interested in describing a new scalable,

parallel, optimal ESRF core built upon the HEDAS

processing framework that overcomes the limitations

described above.

2. Direct solution of square root observation filter
equations: Theoretical aspects

In this section we develop the theoretical basis for

our parallel direct solution to the ESRF equations using

covariance localization. The important symbols refer-

enced in this paper are listed in the appendix to assist

the reader.

a. Solution of ESRF matrix function via eigenpairs

For the ensemble mean x of size Nstate 3 1 and en-

semble perturbations X0 of sizeNstate 3Nens, the square

root ensemble Kalman filter without perturbed ob-

servations (Whitaker and Hamill 2002) can be written

as an update to the analysis a from the previous fore-

cast f as

x
a
5 x

f
1Kðy2H(X

f
)Þ

X0
a 5X0

f 1
~K(02HX) ,

(1)

where y (Nobs 3 1) is the observations, H(Xf ) (Nobs 3 1)

is the mean of the forward-calculated observations,

HXi, j 5 hi(X
( j)
f )2 hi(Xf ) is the mean-subtracted ith ob-

servation operator acting on the jth ensemble member

X
( j)
f . TermHX is Nobs 3Nens (as is 0, a matrix filled with

zeros), and the assumption is that Nstate � Nobs � Nens.

The traditional Kalman gain, K (Nstate 3Nobs), is

K5C
x,Hx

D21 , (2)

where Cx,Hx 5 cov(xf , H(xf )) is the covariance between

xf (an Nstate 3 1 random variable representing the

previous forecast) and H(xf ) (the observation opera-

tor acting on this random variable). Equation D5
CHx,Hx 1R for CHx,Hx 5 cov(H(xf ), H(xf )), and R is

the observation error covariance cov(yt 2H(xf )) for a

random variable yt representing the true observations

without observation noise.

Term ~K (Nstate 3Nobs), the correction from using non-

perturbed observations, is

~K5C
x,Hx

D21/2(
ffiffiffiffi
D

p
1

ffiffiffiffi
R

p
)21 . (3)

These equations produce the minimum error variance

estimate of the state and covariance given the

observations, a result that holds even with non-Gaussian

errors and nonlinear observations (Kalnay 2003).

As it is difficult to compute the square roots and

inverses in Eqs. (1)–(3), the so-called serial approach
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is usually taken, but in this work we aim to directly

solve Eq. (1). Since ~K involves the square root1 of D

and R, ~K is more difficult to work with than K.

These square roots will require analysis of eigenvalue/

eigenvector pairs.

To begin, it simplifies our analysis greatly if we remove

the square root ofR by noting thatR can be written as the

identity matrix I through the transformation

y5R21/2
old y

old
, (4)

where the ‘‘old’’ subscript represents the untrans-

formed observation. In addition, the observation op-

erator is also scaled as H(x)5R21/2
old Hold(x). The effect

of this transformation is that R is now identity. This

changes the covariances from the original ESRF

problem, but assimilating observations with different

units (or no units, as with this transformation) should

not lead to drastically different analyses.2 Note that for

the diagonal observation error matrix Rold typically

considered, multiplying by R21/2
old amounts to dividing

each observation by the standard deviation of the

observation error; for correlated nondiagonal Rold,

this transformation removes that correlation by using

principal components.

We now begin our analysis. Rearranging Eq. (3),

we have

~K5C
x,Hx

M21 (5)

for M5 (
ffiffiffiffi
D

p
1

ffiffiffiffi
R

p
)

ffiffiffiffi
D

p
. By Eq. (4), M5D1

ffiffiffiffi
D

p
.

Let li, vi denote the ith eigenpair of CHx,Hx. Then

Mv
i
5C

Hx,Hx
v
i
1 v

i
1 (C

Hx,Hx
1 I)1/2v

i
. (6)

For some square matrix T, as the eigenvectors

for (T1aI)p are the same as T for any scalar a and p,

while the eigenvalues are (li 1a)p (Higham 2008), we

have

Mv
i
5 l

i
1 11 (l

i
1 1)1/2

� �
v
i
; (7)

therefore,

M21v
i
5 l0

ivi (8)

for

l0
i 5

1

l
i
1 11 (l

i
1 1)1/2

. (9)

Note that li $ 0 as CHx,Hx is a symmetric positive

semidefinite covariance matrix. As li /‘, l0
i goes to 0,

while for li / 0, l0
i goes to 1/2.

With covariance localization, without the loss of

symmetry or positive semidefiniteness, the matrix

CHx,Hx in our implementation is formed by a Schur

product,

C
Hx,Hx

5 r
y,y
+Q

Hx,Hx
, (10)

where ry,y is the localization matrix arising from a

localization function (Gaspari and Cohn 1999) ‘

such that

(r
y,y
)
i,j
5 ‘(d

i,j
jL

i,j
), (11)

where di,j is the distance between the location of the

ith and jth observations,3 and Li,j is the characteristic

length scale for the localization function ‘. MatrixQHx,Hx

is defined as

Q
Hx,Hx

5
HX(HX)T

N
ens

2 1
. (12)

By the Schur product rank inequality theorem,

rank(C
Hx,Hx

)# rank(r
y,y
)rank(HX) . (13)

Since the rank of HX is Nens, we have

rank(C
Hx,Hx

)#N
ens

rank(r
y,y
). (14)

Assume for a moment Li,j 5L for all i and j. The rank

of ry,y depends on L and the distances between obser-

vations. When L/ 0, all observations become com-

pletely independent (as ‘i,j 5 d
j
i for the Kronecker d)

and CHx,Hx is full rank, while when L/‘, all1 In this paper by A5B1/2 we mean AA5B rather than the

alternative definition AAT 5B.
2While a similar normalization technique is used in Bishop et al.

(2001), our main motivation is to treat the R21/2
old scaling term as a

preprocessing step in order to avoid carrying it through the equa-

tions. This changes the original assimilation problem in the pres-

ence of covariance localization [see Eqs. (10) and (26) below] so

that the scaled observations and operators are localized and as-

similated. This approach is otherwise equivalent to the nonscaled

problem but is easier to solve.

3 Note to ensure positive semidefiniteness of ry,y, the distance

defined here must follow the rules of a metric, namely, the distance

is nonnegative, a distance is zero if and only if the points are the

same, the distance between two points is symmetric, and the tri-

angle inequality between three points holds. As a practical note,

the mismatch of different length scales Li,j may violate the third or

fourth requirements.
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observations are completely correlated (as ‘i,j 5 1 for

all i, j) and rank(CHx,Hx)5Nens, the same as without

localization.

Returning our attention to Eq. (10), for li ’ 0,

the corresponding l0
i of M21 will be approximately

1/2 (which makes M invertible regardless of whether

CHx,Hx is). The remaining eigenvectors corresponding

to the approximately 1/2 eigenvalues are orthogonal

to W5 span(vi) for i5 1, . . . , rtrue, where rtrue 5
rank(CHx,Hx).

With this in mind, suppose we set all eigenvalues l0
i

to 1/2 for i. r for some r# rtrue such that lr is small.

Thus, define the matrix M21
r operating on the ith

eigenvector as

M21
r v

i
5

8><
>:

l0
ivi if i# r

1

2
v
i

otherwise.
(15)

The difference between M21vi and M21
r vi is 0 for i# r,

and for i. r it is

(M21 2M21
r )v

i
5

�
l0
i 2

1

2

�
v
i

(16)

by Eq. (7),

l0
i 2

1

2
5

12
1

2
l
i
1 11 (l

i
1 1)1/2

� �

l
i
1 11 (l

i
1 1)1/2

. (17)

The Taylor series expansion around 0 for (li 1 1)1/2 5

11
li

2
2

l2
i

8
1⋯. Substituting,

l0
i 2

1

2
5

12
1

2

�
21

3

2
l
i
2

l2
i

8
1⋯

�

21
3

2
l
i
2

l2
i

8
1⋯

. (18)

Simplifying,

l0
i 2

1

2
5

23l
i
1

l2
i

4
1⋯

81 2
�
3l

i
2

l2
i

4
1⋯

� . (19)

This gives an upper bound of the error as

����l0
i 2

1

2

����# 3

8
l
i

(20)

for 0# li # 1. Since the two (spectral) norm of some

matrix T is the square root of the largest eigenvalue of

TTT, we have

kM21 2M21
r k# 3

8
l
r11

, (21)

where r1 1 is the index of the first neglected eigenvalue.

Therefore, if we can devise a numerical method to find

the largest eigenvalue eigenpairs of the Nobs 3Nobs

sparse matrix CHx,Hx, we can accurately and efficiently

directly solve the difficult part of the square root

ensemble Kalman filter equations. In particular, as

the space spanned by the constant 1/2 eigenvalues is

orthogonal to the space spanned by the first r eigen-

vectors, we have

M21
r Z

j
5 �

r

i51

l0
iai, j

v
i
1

1

2
Z
j
2 proj

Vr
(Z

j
)

� �
, (22)

where Zj 5 (02HX)j is the jth negative observation

perturbation; ai,j is the projection of Zj along vi, that is,

a
i, j
5 vTi Zj

; (23)

and projVr
(Zj) is the projection of Zj into the space Vr

spanned by the first r eigenvectors, that is,

proj
Vr
(Z

j
)5 �

r

i51

a
i, j
v
i
. (24)

For K, the same method can be used on D instead of M,

that is,

D21Y5 �
r

i51

b
i

l
i
1 1

v
i
1Y2 proj

Vr
(Y) (25)

for Y5 y2H(xf ) and bi 5 vTi Y.

Equation (1) is now solved by premultiplying M21Zj

and D21Y by

C
x,Hx

5 r
x,y
+Q

x,Hx
(26)

for

(r
x,y
)
i, j
5 ‘(d

i, j
jL

i, j
), (27)

where di,j is the distance between the location of the

model state i and observation j with the same localiza-

tion function as Eq. (11), and

Q
x,Hx

5
X0
f (HX)T

N
ens

2 1
. (28)

b. Rank-deficient observation covariance matrix

In the previous section, we developed an algo-

rithm to solve the ESRF equations directly by finding
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the r largest eigenvalues of CHx,Hx and proved

that the eigenpair-based method solves Eq. (1) to

within a configurable tolerance. However, the terms
1/2[Zj 2 projVr

(Zj)] and Y2 projVr
(Y) are problematic. If

the CHx,Hx matrix is full rank, then these terms will

be zero, since Vr will form a basis for R
Nobs and

a5projVr
(a) for all a. In the case that CHx,Hx is rank

deficient, these terms are allowed to contribute to the

inverse directly without input from the ensemble co-

variance. In other words, if CHx,Hx is rank deficient,

then there will be a vector w such that CHx,Hxw5 0 (i.e.,

w is in the null space of CHx,Hx), and therefore this

portion of zw 5 z1w can be added into the inverse

without being impacted by the observation covariance.

This w term represents pure noise and degrades the

quality of the solution.

To see this more clearly, consider that the eigenvalues

li will approach zero until i5 rtrue, but there is a fun-

damental difference between eigenpairs for i# rtrue and

i. rtrue. From Eq. (25), the D21 5 (CHx,Hx 1 I)21 matrix

inverts li 1 1 so that the largest eigenvalues become the

smallest and vice versa. This means when li is large, the

contribution from CHx,Hx dominates (and therefore
1

li 1 1
/ 0Þ, while when li is small, the contribution

fromR dominates (so that
1

li 1 1
/ 1). Thus, the inverse

is a weighting of the relative uncertainties between the

observation ensemble and the observation error co-

variances. When i. rtrue, the weighing erroneously as-

serts that the contribution from the ensemble-estimated

observation covariance is zero; that is, the ensemble co-

variance is completely certain of this mapping direction,

when in fact according to CHx,Hx this direction is actually

a linear combination of the other observations.

The problem comes about because, according to the

modeled CHx,Hx, the covariance ofNobs can be described

with only rtrue linearly independent vectors; that is, there

is some linear dependence between the observations.

To fix this, let us conceptually assimilate only r# rtrue
principal component observations. Consider

~Hx5UT
r Hx , (29)

where Ur is a matrix with columns of the first r eigen-

vectors of CHx,Hx (vi, i5 1, . . . , r). Thus,

cov( ~Hx, ~Hx)5UT
r CHx,Hx

U
r
5S

r
, (30)

where Sr is a diagonal matrix with the first r eigenvalues

of CHx,Hx. Furthermore, for the observations ~y5UT
r y,

cov ~y2 ~H(x
f
)

� �
5UT

r cov y2H(x
f
)

� �
U

r
5UT

r RUr
5 I

r
,

(31)

as R5 I by the preprocessing step of Eq. (4). Therefore,

the M0 (the updated M with these ~y) from Eq. (5) is

M0 5 S
r
1 I

r
1 (S

r
1 I

r
)1/2

� �
, (32)

a diagonal matrix, and so likewise is

D0 5 (S
r
1 I

r
) . (33)

The inverses of these matrices are now easy to com-

pute as

(M0)21z0j 5 S
r
1 I

r
1 (S

r
1 I

r
)1/2

� �21

UT
r Zj

. (34)

Finally, while it is theoretically possible to directly

work with ~y, for observation-space covariance localiza-

tion in CHx,Hx, we must project back to the observation

space so that each observation has an ascribable

location. Therefore, writing in terms of the summation

notation in Eqs. (22) and (25) above,

U
r
(M0)21z0j 5 �

r

i51

l0
iai, j

v
i

(35)

and

U
r
(D0)21Y0 5 �

r

i51

b
i

l
i
1 1

v
i
. (36)

Note that the only differences between Eqs. (22) and

(35) and (25) and (36) are the projection (noise) terms.

Assimilating principal component observations re-

moves these terms, and they would be zero if CHx,Hx

was full rank. Therefore, assimilating principal com-

ponent observations is equivalent to neglecting the

projection terms in Eqs. (22) and (25), and thus we

need not actually directly assimilate principal compo-

nent observations; the inverse matrix action can be

transformed round-trip back into observation space,

avoiding the null space of CHx,Hx in the process. The

projection-neglected Eqs. (35) and (36) are thus used

with Eq. (26) to compute ~K andK in Eq. (1) to solve the

ESRF problem.

Lastly, it is clear that with the eigenpair approach, r

should be as close to rtrue as possible, for the smallest

eigenvalues become the most important, most certain

directions to project along. This can pose numerical

difficulties that our eigenproblem solver must manage.

We will address this issue in section 3.

c. Model-space localization

Equation (10) localizes covariance in observation-

space, meaning observations are assumed to have an

ascribable location, and distances are computed based
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on the distances between these observations. However,

unlike traditional observations such as dropsondes,

integrated observations such as satellite radiances

(which are affected by the entire vertical structure of the

atmosphere and have a horizontal footprint based on the

antenna size) do not have a single location. Campbell

et al. (2010) demonstrated how the use of observation-

space localization can degrade the quality of the analysis

in these cases, while Lei and Whitaker (2015) showed

that observation-space localization produces a superior

analysis for a particular satellite radiance case. Both

approaches are idealized models of how covariance

decays (isotropically) as a function of distance, and

which covariance model is superior is likely to be case

dependent. This is an area of research that requires

further investigation.

As we directly find the eigenpairs of the sparse

matrix CHx,Hx, our method is theoretically com-

patible with model-space localization. To use this

approach, the observation operator tangent-linear H

and adjoint HT are applied to the localized model

covariance as

Cmodel
Hx,Hx 5H(r

x,x
+Q

x,x
)HT , (37)

where

Q
x,x

5
X0

f (X
0
f )

T

N
ens

2 1
, (38)

and

(r
x,x
)
i, j
5 ‘(d

i, j
jL

i, j
), (39)

where di,j is the distance between the location of

two model states i and j with the same localization

function as Eq. (11). Equation (26) is changed anal-

ogously as

Cmodel
x,Hx 5 (r

x,x
+Q

x,x
)HT . (40)

It is not necessary to form the prohibitively expensive

full Nstate 3Nstate Qx,x matrix, as only the locations of

H and HT need to be computed in Eq. (38). This can

be accomplished pairwise for each observation i and

j by computing the localized model points at the ob-

servation location overlaps. However, in addition

to requiring observation operator tangent linear

models and adjoints, this approach requires some

bookkeeping and communication to track which ob-

servation operators use which model points, and for

ease of implementation in this paper, we therefore

demonstrate our methodology with observation-space

localization without the loss of generality for the the-

oretical algorithm.

d. Comparison to other selected eigenvalue-based
EnKF methods

Previous works have used eigenproblem-based

methods to solve the EnKF equations based on similar

principles but without, to the authors’ best knowledge,

a full accounting of covariance localization and rank

deficiency. Bishop et al. (2001) uses the eigenvalue

decomposition of the Nens 3Nens matrix
1

Nens

(HX)THX

to find the solution of the inverse in Eq. (1). This is

equivalent to finding the Sherman–Woodbury update as

shown in Tippett et al. (2003). However, this approach

cannot be used in the presence of covariance lo-

calization, as Eq. (10) includes the Schur product and

increases the rank of the matrix CHx,Hx, requiring either

computation of all nonsingular eigenvalues of CHx,Hx or

the columns of the square root of the localization matrix

as in Bishop and Hodyss (2009) using the so-called

modulation product. Posselt and Bishop (2012) showed

how to extend the findings of Bishop et al. (2001) in a

computationally efficient way to where there are more

ensemble members than observations making the

CHx,Hx matrix full rank; we extend this analysis without

this assumption. Hamill and Snyder (2002) used ei-

genvectors of CHx,Hx to test the impact of a single ra-

diosonde on the mean forecast, assuming the matrix is

full rank. Our paper likewise extends this to multiple

(possibly rank deficient) observations with covariance

localization, updating both the mean and ensemble.

Furrer and Bengtsson (2007) examined the issue of

covariance localization in the ensemble Kalman filter

and found several approaches to estimate ‘‘taper ma-

trices,’’ which approximate the localized covariance

matrix, yet are not necessarily positive semidefinite. In

this work we will directly consider the eigenpairs of the

localized covariance matrix instead.

3. Direct solution of square root observation filter
equations: Numerical implementation

In the previous section we developed a theoretical

method for directly solving the ESRF Eq. (1) by

computing the eigenpairs of CHx,Hx such that even a

rank-deficient matrix can be utilized. Finding eigenpairs

of a matrix is a prevalent problem across many different

research fields (e.g., Borsanyi et al. 2015; Keçeli et al.
2016) as well as industry (e.g., Bryan and Leise 2006).

Therefore, we are able to benefit from the massive

amounts of effort that has been expended in this area by

choosing an appropriate library.
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Finding the eigenpairs of CHx,Hx

In the previous section we showed that finding the

eigenvectors and eigenvalues of CHx,Hx was sufficient

to solve the most difficult part of Eq. (1)—the matrix

inverse ofM, which involves a square root of D, which in

turn involves a Schur product.

CHx,Hx is a sparse Nobs 3Nobs matrix. In HEDAS,

where frequent cycling is used, the number of assimilated

observations in a single cycle is on the order of 105,

and therefore these matrices can be represented directly

in memory spread across multiple machines. Even a full

105 3 105 double-precision matrix would correspond

approximately to 150GB of memory, and with 32GB of

RAMper node, thematrix can be represented inmemory

distributed across approximately five or six computa-

tional nodes. Furthermore, because of covariance lo-

calization, these matrices are sparse enough that the

covariance matrix can fit in memory on just one or at

most two nodes. However, as the number of observations

increases, it may become necessary to represent CHx,Hx

only in terms of the matrix action upon some vector w as

CHx,Hx. Furthermore, as the data assimilation problem

continues to grow,wewould benefit enormously from the

experience of the computational science community with

different methods to store and solve sparse linear algebra

and eigenvalue problems.

We wish to use a flexible solver that is capable of han-

dling multiple types of problems (e.g., if we required

using a matrix action at some point in the future) and to

take advantage of different linear algebra techniques

(such as direct and iterative matrix solvers). The Scalable

Library for Eigenvalue Problem Computations (SLEPc;

Hernández et al. 2003, 2005; Campos and Roman 2012;

Roman et al. 2016), which is built upon the Portable, Ex-

tensible Toolkit for Scientific Computation (PETSc; Balay

et al. 1997, 2016a,b), meets these requirements. PETSc

recently celebrated its 20th anniversary (http://www.mcs.

anl.gov/petsc/petsc-20.html), and SLEPc/PETSc has been

used successfully by Keçeli et al. (2016) on over 266000

cores to extract 330000 eigenpairs in approximately 190 s.

In short, it is amature and flexible and scalable library with

developmental support and a wide-ranging user base.

We now describe our parallel numerical imple-

mentation built upon this framework. We first must

divide the computational domain among processing

elements (PEs). We wish to allow all observation oper-

ators to be computed in parallel, so each PE must have

all the model points necessary to compute the operator.

With this in mind, while additional observations remain,

the least-utilized PE is chosen, and the observation and

all model points necessary to compute it are assigned to

that PE (duplicating model indexes if necessary;

however, only one PE is assigned as the owner of a given

model point). Once all observations have been distributed,

the remaining model indexes not directly used in the

computation of observation operators are divided among

the remaining PEs. An attempt is made to keep vertical

columns of the domain together on one PE to improve

performance. For any given model point, then, multiple

PEs may load the data but only one will be marked as the

owner; for each observation, only one PE will be re-

sponsible for computing and transferring that observation.

For a given PE, the selected indices across all en-

semble members are loaded from disk using Parallel

netCDF (Li et al. 2003), and the forward observation

calculations and quality control are performed in par-

allel and then broadcasted to all PEs. We now divide

CHx,Hx into groups by assigning a starting and ending

row for which a given PE will be responsible.

For our eigenvalue problem, we use the multiple

shift–invert Lanczos method (Bai et al. 2000; Aktulga

et al. 2014; Keçeli et al. 2016). A two-step process is

used. The first stage divides the eigenvalue spectrum, in

parallel, into regions with approximately equal numbers

of eigenpairs. The second step computes all eigenvalues

and eigenvectors, in parallel, within each region from

the previous step. Each region is assigned multiple

processors, allowing for two levels of parallelism.

Let nregions be the number of regions and nppr be the

number of PEs per region. Therefore,

n
PE

5 n
regions

3n
ppr

, (41)

where nPE is the total number of PEs.

To compute the matrix spectrum of a matrix CHx,Hx,

the matrix inertia theorem is utilized, which states that

the number of eigenvalues in the region (z, h), for

z, h 2 R, can be found by decomposing [in our case, in a

parallel and distributed way by calling from PETSc the

Multifrontal Massively Parallel Sparse Direct Solver

(MUMPS); Amestoy et al. 2000] both

C
Hx,Hx

2 zI5L
z
D

z
LT
z (42)

and

C
Hx,Hx

2hI5L
h
D

h
LT
h , (43)

where Lz and Lh are lower triangular and Dz and Dh are

block diagonal. The difference between negative entries

of Dz and Dh in Eqs. (42) and (43) is the number of

eigenvalues in the region (z, h). As in Aktulga et al.

(2014), an evenly spaced first guess of region divisions is

given to each of the nregion groups, and the matrix inertia

is computed at each of these points. The resulting
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spectrum is then interpolated so that each region has an

approximately equal number of eigenpairs for efficient

division of effort. The matrix inertia at these divisions is

computed once again to ensure the eigenvalue spectrum

is exact. As mentioned in Aktulga et al. (2014), this

spectrum slicing strategy is a computationally expensive

step ultimately worth the cost in order to achieve effi-

cient distribution of effort for what follows.

Once each processing region (with nppr PEs) is

assigned a portion of the eigenvalue spectrum, the shift–

invert Lanczos method is used within SLEPc to compute

all of the known number of eigenvalues and eigenvec-

tors within this region (Campos and Roman 2012).

The left and right endpoints compute the smallest and

largest eigenpairs, respectively, both of which SLEPc

can handle. Because it is easier to work with a non-

singular matrix, we compute the eigenpairs of CHx,Hx 1 I

and subtract 1 from the eigenvalues to give li.

After the eigenpairs have been computed, Eqs. (35)

and (36) are found and then distributed to each PE. Since

A5Ur(M
0)21Z (where Z52HX) is (Nobs3Nens) and

b5Ur(D
0)21Y is (Nobs 3 1) [which again are computed as

sums in the right-hand sides of (35) and (36)], these are

combined into (Ajb), a (Nobs 3Nens 1 1) matrix, which is

relatively small. Each processing element then computes

Cx,Hx(Ajb) for each model index it is responsible for to

solve Eq. (1) in an embarrassingly parallel way. This is

possible, as each PE has the entire (Ajb) matrix and

observation locations in memory, and only the local

model analysis grid points are required to compute the

localization and matrix product terms in Eq. (26) in

Cx,Hx(Ajb) with observation-space localization.4 This is

sufficient for each PE to solve the Kalman equations; that

is, there is no need for any explicit communication among

processors after (Ajb) has been distributed except to

write the computed analysis to disk.

Our parallel algorithm for directly solving Eq. (1) is

summarized in Table 1.

4. Numerical results

We implemented the abovementioned algorithm, in-

cluding installing and testing the SLEPc/PETSc library,

in Fortran onNOAA’sResearch andDevelopmentHigh

Performance Computing Program Jet supercomputing

system. We tested this with a Hurricane Edouard (2014)

case with 30 ensemble members and approximately 8-K

quality-controlled observations from sources including

satellite retrievals and the NASA AV-6 Global Hawk

20140916GH Storm Survey mission (Zawislak et al.

2016; Rogers et al. 2016). The details of the evolution of

the tropical cyclone can be found in Stewart (2014). As

with other HEDAS studies, the initial conditions were

initialized from the GFS ensemble 6h before assimila-

tion; for more information see section 1b.

We test assimilating these observations with a fixed

covariance localization length L from Eqs. (27) and

(11) set to L5 30, 60, 90, 120, and 240 as c5L/2 from

Eq. (4.10) of Gaspari and Cohn (1999). The unit on L is

the number of grid cells, each of which is approximately

2 km, on the total domain of size 232 3 451 3 60

longitude/latitude/vertical model grid points, and L

represents the number of horizontal grid points before

the correlation reaches 0. Vertically the correlation

length scale is Ly 5 15; in other words, the vertical dis-

tance is scaled by L/Ly so that after 615 vertical levels,

the correlation goes to 0. While we vary the horizontal

L, Ly is fixed at 15.

The eigenvalue spectrum of these different cases is

shown in Fig. 1, which shows that the number of eigen-

values (i.e., the rank of CHx,Hx) grows larger as L grows

smaller. For all values of L, there is a sharp decay in the

eigenvalue spectrum after 1022; likewise, there are few

eigenvalues larger than 102.

The prior forecast and analysis means based on

Eqs. (35) and (36) are shown in Fig. 2 for temperature in

the midlevels (35 out of 60, where the first level is the

surface and level 60 corresponds to 50 hPa). The prior

demonstrates a symmetric warm core, while in this

TABLE 1. Parallel direct square root EnKF implementation

pseudocode.

PROGRAM Parallel Direct
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENKF

p
Solver

DISTRIBUTE obs, model indexes for xf, Xf

COMPUTE quality control, fwd obs
DIVIDE sparse CHx,Hx into nregions, nppr

FIND eigenvalue spectrum using matrix
inertia

INTERPOLATE spectrum to distribute
eigenpairs

RECOMPUTE exact eigenvalue spectrum
CALL eigensolver for all eigenpairs in
region

SOLVE ai,j, A5M21Z, bi, b5D21Y

DISTRIBUTE (Ajb) (Nobs 3Nens 1 1) to CPUs

FOR EACH model point i on each CPU, in k
COMPUTE (xa)i, (X

0
a)i

WRITE xa, X
0
a to disk

END Parallel Direct
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENKF

p
Solver

4 Note that with model-space localization, an additional pro-

cessing step would be necessary to compute the intersection

between the model grid points on each PE and the observation

operators for Cx,Hx in order to apply Eq. (40). This bookkeeping

is the same as that used to compute CHx,Hx in Eq. (37).
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case the analyzed vortex is not nearly as symmetrical.

That the vortex may be unbalanced in the analysis is a

common problem in data assimilation (Nehrkorn et al.

2015), and there are multiple potential remedies

(Beezley and Mandel 2008; Kalnay and Yang 2010;

Nehrkorn et al. 2015). The approach currently used in

HEDAS is to distribute observations among frequently

spaced assimilation subcycles using a storm-relative

approach (Aksoy 2013), allowing the model dynamics

to ease toward the observations over multiple assimila-

tions. The results shown here are from the first and only

such cycle, and therefore still include the deleterious

effects of feature misalignment. However, as our intent

is primarily to demonstrate the feasibility of this im-

plementation on a relatively large set of observations,

we do not account for these issues here.

Figure 3 shows the same analysis with the rank-

deficiency projection error of the potentially rank-

deficient observation covariance matrix. We define this

projection error to be the effects of using Eqs. (22) and

(25), which amounts to possibly erroneously assuming

CHx,Hx is full rank, instead of the corresponding cor-

rected versions Eqs. (35) and (36), respectively, that

address this rank deficiency. The rank-deficiency pro-

jection error grows larger as a function of L (the cor-

relation length scale) as the rank of the matrix decreases

and the impact of each observation is over a larger part

of the domain. Figure 4 shows the log10 absolute dif-

ference between the rank-deficiency-neglected analysis

and the corrected analysis of the 10-m wind speed, first

arising from differences in ordering (the difference is

zero to double-precision machine «), and then as a

function of correlation length scale. The features of this

projection error also suggest how the eigenpairs (in this

case the extraneous linearly dependent directions) ex-

hibit complex spatial structure.

Figure 5 shows the root-mean-square rank-deficiency

projection error (at all points over the entire domain)

and maximum projection error as a function of model

level (the first level is the surface) for temperature,

water vapor, and condensed watermass for our Edouard

case for the different L values. For the longest L, the

RMSE can reach 0.55K, 0.65 g kg21, and 0.25 g kg21 for

temperature, water vapor, and condensed water mass,

respectively, in the middle to upper troposphere. The

maximum projection error arising from the projection

onto degenerate directions can reach values on the order

of approximately 5 times the RMSE. In short, the pro-

jection error can be surprisingly large and likely physi-

cally meaningful, especially with larger values of L.

The eigenvalue computations took between 25s (L5 30)

and 120s (L5 240) with 384 PEs —in other words, fewer

eigenvalues actually take longer to compute. This is because

the matrix becomes more dense as L grows and working

with thematrix takes longer. In all the cases tested, the error

of kCHx,Hxvi 2 livik was less than 1027 for all i.

We conducted our tests on the NOAA Jet super-

computing system (tjet processing queue) where each

node has 12 cores with a 2.66-GHz CPU and 2GB

of RAM, each connected via a quad data rate (QDR)

InfiniBand. Tests determined that nppr 5 6 (six PEs per

region) performed best. The peak flops/node is 127.7

gigaflops, while in the SLEPc portion of the code wewere

able to achieve a peak performance of approximately 440

gigaflops with 384 PEs with this setup—about 11% of

the theoretically optimal performance. Figure 6 shows

the increase in computation speed as a function of the

number of PEs with a fixedL5 60. As shown, the time to

distribute the observations and model indices across the

PEs (Fig. 6a) is a fixed time, as it is currently done in

serial. Parallel netCDF read performance (Fig. 6b)

showed improvement as the number of PEs increased,

but parallel writes (Fig. 6e) showed a marked decrease in

performance as the PEs competed with one another for

access to the disk head. The eigenproblem computation

(Fig. 6c) and filtering time (Fig. 6d) [i.e., solution of

Eq. (1) once (Ajb) has been distributed to all PEs] in-

crease even faster than linearly as a result of the advan-

tages of the smaller matrix sizes fitting in cache memory.

Therefore, overall (Fig. 6f) the problem is input/output

(I/O) bound, and improvements to the parallel file

system would be necessary for additional performance

gains. This makes sense, as the problem of reading

and writing all Nstate 3Nens variables is by far the most

expensive operation in data assimilation. An additional

order of magnitude of observations than our current test

would likely necessitate additional PEs, but for the

FIG. 1. Eigenvalue spectrum of CHx,Hx as a function of L for the

Hurricane Edouard assimilation test case. The number of eigen-

values (i.e., the rank of the matrix) grows as L shrinks, as expected.

1876 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 34



current problem size (’104), 384 PEs achieve the max-

imum parallel performance gain.

From these results and other results with the SLEPc

library (e.g., Keçeli et al. 2016), we have every reason

to believe this parallel direct method will be able to

scale 106 2 107 observations—or more given additional

computational resources, especially with further im-

provements to the parallel file system.

FIG. 2. Temperature at level 35 (of 60 total, corresponding to a height of approximate 5.5 km)

for (a) the prior mean, (b)–(f) analysis means with L5 60, L5 90, L5 120, L5 180, and

L5 240. Analysis uses Eqs. (35) and (36) to remove the projection error arising from neglecting

the rank deficiency of CHx,Hx.
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5. Conclusions

In this paper we describe an algorithm to compute, in

parallel, a direct solution to the ensemble square root

Kalman filter (ESRF) equations in a way that does not

depend on the ordering of observations. The previous

approach for solving the ESRF equations, based on a
serial assimilation of observations, became suboptimal
when covariance localization was introduced, as the
covariance localization operation is not linear and
does not commute with serial assimilation in ESRF

implementations described to date. While a consistent

FIG. 3. As in Fig. 2, but without accounting for the rank-deficiency projection error from Eqs.

(22) and (25). Analysis is nearly identical for L5 60 and L5 90, but by L5 240 there are large

differences. Rank-deficiency projection error grows with L and the number of observations.
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serial non–square root EnKF was previously pre-

sented in the CHEF implementation of Bishop et al.

(2015) with the use of perturbed observations, this

work describes an equivalently consistent parallel

direct ESRF implementation without the use of

perturbed observations. To maintain consistency, we

solve the ensemble square root Kalman filter equa-

tions directly in order to regain the optimal

FIG. 4. The log10 absolute difference between analyzed 10-m wind speed (m s21).

(a) Difference between two random orderings with all values of L is less than 1028. (b)–

(f) Difference between the simulations in Figs. 2 and 3. Rank-deficiency projection error grows

as a function of L both in size and spread.

SEPTEMBER 2017 S TEWARD ET AL . 1879



properties of the filter. We demonstrate how this can

be done in a practical manner by using the theory of

matrix functions to show that for the observation

covariance matrix CHx,Hx (which can include co-

variance localization), after making the observation

error covariance white by the transformation

y5R1/2
oldyold, the eigenvectors vi of f (CHx,Hx) are the

same as CHx,Hx and the eigenvalues are the same as

those found by ‘‘scalarizing’’ the function f and

substituting li, that is, f (li). We demonstrate an error

bound on the approximation. When using the first

implementation described that explicitly considers

the null space of the forward observation covariance,

the solution contains a ‘‘projection error’’ when

this matrix is rank deficient. We demonstrate how

this projection error can be eliminated by conceptu-

ally assimilating principal component observations;

in fact, this is exactly the same as removing the

FIG. 5. Domain-averaged root-mean square projection error (RMSE) and maximum

projection error (max error) for temperature, water vapor, and condensed water mass in

the Hurricane Edouard case. RMSE for a given level is measured over the entire domain.

Level 1 is the surface; 60 is the model top at 50 hPa. For this assimilation case, the error is

largest near level 35 and reaches a maximum of 3 K, 4 g kg21, and 3.5 g kg21 for these fields

when L5 240. This rank-deficiency projection error is not present when using Eqs. (35)

and (36).
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projection term from the full solution. The rank-

deficiency projection error increases with localiza-

tion length but can be avoided entirely by the

approach we describe. We demonstrate a successful

parallel and scalable numerical implementation of

this algorithm and demonstrate how the assimilation

behaves as a function of covariance localization

length.

As first noted in Bishop et al. (2001) for the ensemble

transform Kalman filter (ETKF), for the actual assimi-

lation method we require only the matrix product of

the matrices considered here. This fact leads to two re-

alizations. First, it may be feasible to construct a method

that avoids computing all of the eigenpairs and instead

uses matrix functions to solve the matrix products in a

much faster way by considering only the space spanned

FIG. 6. Increase in speed of the parallel solution of the assimilation problem as a function of

processing elements for L5 60. Allocation of indices is currently a fixed overhead, as it is

done in serial. Parallel reads can increase in speed with additional PEs but only to approxi-

mately 4–5 times speedup. Eigenproblem computation is superlinear, as each region requires

fewer eigenpairs to solve. The filtering step also grows slightly superlinearly as the matrices

for each region fit intomemory cache.Writing performance decreases with the number of PEs

as a result of disk-head competition and shows large fluctuations apparently caused by system

usage. Completion of 384 PEs takes approximately 8min, which is approximately 10 times

faster in total than 24 PEs. Overall, the process is I/O bound, so increasing beyond 384 PEs

actually decreases the total performance.
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by the range of the most Nens 2 1 matrix product

directions rather than the entire eigenspace. This

approach would be far superior to computing the

full eigenspace. Second, the question of the null

space of the forward observation covariance matrix,

while theoretically interesting, may not be a practical

issue for most EnKF implementations unless the right-

hand product terms have a nonzero projection into

the null space of this matrix. Additional research is

necessary to determine whether and when this ‘‘rank

projection’’ error occurs when using localized co-

variance matrices.

The approach described in this paper is more com-

plex than the serial ESRF approximation, but once

integrated with an appropriate library for solving a

large, sparse, symmetric, positive semidefinite eigen-

problem (taking advantage of the pervasive nature of

the eigenproblem across disciplines), the approach

is not conceptually difficult and becomes highly ame-

nable to a scalable parallel implementation. These

libraries can also integrate many different computa-

tional best practices and bring the solution of the ESRF

equation into line with the state-of-the-art of numerical

linear algebra. In this approach, because observations

are assimilated all at once, unlike the approach given in

Anderson and Collins (2007), the observations do not

need to be treated as augmented state variables for the

parallel implementation. Once the eigenproblem has

been solved, when used with observation-space locali-

zation as presented here, the remaining analysis be-

comes embarrassingly parallel, as there is no need to

communicate across processing elements. The parallel

direct ensemble square root Kalman filter approach

described here is therefore a new class of unper-

turbed observation direct ensemble square root

Kalman filter that is amenable to large-scale parallel

implementations.
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